Researchers developed a unique, ultra-thin sensor that can be applied to the skin without causing discomfort or irritation. It is made of gold. To conduct on-body chemical analysis, the sensor can monitor several biomarkers or chemicals.
SERS in action. SERS, or surface enhanced Raman spectroscopy, is a method of detecting the presence of a chemical indirectly by using laser light and a specialized sensor. The gold mesh provides an ideal surface for taking measurements as it does not interfere with the substance being measured
Through a process known as Raman spectroscopy, the laser light directed at the sensor is modified somewhat based on the molecules that are at that precise point on the skin. The sensor is strong enough for practical usage and can be fine-tuned to be exceedingly sensitive.
Wearable technology is not something unknown or unheard of. It is likely to spot someone with a smartwatch. Several of these can track certain health indicators, such as heart rate, but at the moment they are unable to capture chemical signatures that can help diagnose illnesses.
Additionally, smartwatches or more advanced medical monitoring can be too bulky or often expensive. Due to these shortcomings, a group of scientists from the University of Tokyo’s Department of Chemistry looked for an innovative, non-invasive method of sensing diverse environmental and physiological situations.
The key part of the sensor is a fine gold mesh since gold has low reactivity, which means that when it comes into contact with something the team wants to assess, like a possible disease biomarker found in sweat, it does not chemically change that object.Liu added, “As sensors, they were limited to detecting motion however, and we were looking for something that could sense chemical signatures, biomarkers, and drugs. So, we built upon this idea and created a noninvasive sensor that exceeded our expectations and inspired us to explore ways to improve its functionality even further.”
But instead, due to the fineness of the gold mesh, it can provide a surprisingly large surface for that biomarker to bind to, and this is where the other components of the sensor come in.
Part of the laser light is absorbed and some are reflected as a low-power laser is directed at the gold mesh. Most of the light that is reflected has the same energy as the light that is coming in.
But, some of the incoming light does lose some energy to the biomarker or another measurable substance, and the discrepancy in energy between reflected and incident light is unique to the substance in question.
This distinct energy fingerprint can be used by a sensor known as a spectrometer to recognize the substance. Raman spectroscopy is the name given to the technique that identifies chemicals.
Keisuke Goda, a Professor at the University of Tokyo, stated, “There is also potential for the sensor to work with other methods of chemical analysis besides Raman spectroscopy, such as electrochemical analysis, but all these ideas require a lot more investigation. In any case, I hope this research can lead to a new generation of low-cost biosensors that can revolutionize health monitoring and reduce the financial burden of health care.”
Contact Person: Mr. Seapeak Zhang
Tel: 86-551-65315292
Fax: 86-551-65315737